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Abstract

An authoritative review on stochastic buckling of structures was written by Amazigo some quarter century ago. The

present review summarizes some of the developments which took place since then. A brief overview of the e�ect of

uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation is given. For

the bene®t of the thoughtful reader, the review is of critical nature. Ó 2000 Published by Elsevier Science Ltd.
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1. Introduction

The general theory of buckling and postbuckling behavior of elastic structures and its principal essence ±
the imperfection sensitivity theory ± was worked out by Koiter (1945, 1963a,b, 1967, 1970). Further
contributions were provided by Budiansky and Hutchinson (1964), Stein (1968), Elishako� and Arbocz
(1985) and other investigators. For bibliography, the reader may consult, for example, the review articles by
Budiansky and Hutchinson (1966, 1979), Hutchinson and Koiter (1970), Stein (1972), Budiansky (1974),
Koiter (1976), Arbocz (1991, 1997), and Knight and Starnes (1998).

There are many other investigations dealing with the schism that exists between the theoretical analyses
and the experimental results. Most unfortunately, experimental results ``misbehave'' and do not match the
theoretical predictions. In these circumstances, it was not unnatural to look for uncertainty as a responsible
factor for the scatter in the experimental results. One conceptually understands that no two identical shells
exist even when produced by the same manufacturing procedure. Motivated by this idea, the investigators
could ascribe the scatter in buckling loads to the scatter in the initial imperfections.

The next step was the identi®cation of uncertainty with randomness and recourse to the probabilistic
methods. We ®nd the ®rst indications of these thoughts in the paper by Ho� (1949).

This idea was pursued by Bolotin (1962), apparently independently. He postulated, in brief, that the
buckling load k of a structure can be expressed as a deterministic function of a ®nite number of parameters
ni, representing the initial imperfections:
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k � u�n1; n2; . . . ; nN �; �1�
where N is the number of terms considered in the expansions. We also assume that we are given the function
u, as well as the joint probability density

fX �n1; n2; . . . ; nN � � � � �Prob
\N
i�1

�ni

"
6 X i 6 ni � Dni�

#
�2�

of the random initial imperfection vector, denoted by X � �X 1;X 2; . . . ;X N �T, i.e., the probability that the
random components X i of the vector X will belong to the interval �ni; ni � Dni�, where Dni is an increment.
Due to the assumed randomness of the initial imperfection, the associated buckling load turns out to be a
random variable also, denoted by K. Note that the random variables are denoted by capitals, whereas the
possible values they can take on are denoted by lowercase notations. Bolotin (op. cit.) applied this method
to a cylindrical panel, under uniform compressive load along its curved edges, with the initial imperfections
represented by a single normally distributed amplitude parameter. A single-term Bubnov±Galerkin ap-
proximation yielded an equation of type (1). Conceptually, such one-term analysis is quite straightforward.
Once a relation of type (1) is obtained, and the probability density of the initial imperfection X i0 speci®ed or
assumed (i0 is the index of the governing initial imperfection parameter), one can calculate the reliability of
the structure. The reliability at a preselected load level a is de®ned as the probability that the structure will
not buckle prior to a or in other words, will live beyond the ``age'' of a:

R�a� � Prob�K P a�: �3�
Having determined the reliability of the structure, one proceeds with its design as follows: one should

specify a codi®ed reliability r, i.e., the level of reliability below which the performance of the structure is
declared unacceptable. The probabilistic design criterion demands

R�a�P r: �4�
Inequality (4) makes it possible to solve some basic problems of stochastic buckling. If the left- and the

right-hand sides of Eq. (4) are known, then one can check if the probabilistic design criterion (4) is met or
violated. If some probabilistic characteristic of the initial imperfection, say its variance d2

i0
, is unspeci®ed,

one can calculate its maximum admissible level max di0 , such that the design criterion is satis®ed. The value
max di0 is obtained by solving the equation,

R�a� � Prob�K P ajmax di0� � r: �5�
Solution of these types of problems may then be introduced in the quality control process. If the variance

of the initial imperfection exceeds max di0 , the structure is declared unacceptable. The third problem deals
with the determination of the design load ar such that if a 6 ar then the reliability will not be less than r.

The reliability of a symmetrically behaving structure at the non-dimensional load level a can be rewritten
as

R�a� � Prob
�ÿ n1�a� 6 X i0 6 n1�a�

�
; �6�

where n1�a� is the value at which the limit load equals a. This implies that n1�a� satis®es the equation,

k � u�n1� � a: �7�
Hence,

n1�a� � uÿ1�a�: �8�
If, for example, X � X i0 is a random variable having a normal distribution with zero mean and mean-

square deviation di0
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�
; �9�

then the reliability becomes

R�a� � Prob�ÿuÿ1�a� 6 X 6 uÿ1�a��; �10�

R�a� � 2 erf
uÿ1�a�

2di0

� �
; erf�x� � 1������

2p
p

Z x

0

exp

�
ÿ t2

2

�
dt: �11�

This enables one to ®nd the probabilistic design load ar such that if a � ar, then the least reliability of the
structure equals r:

ar � u 2di0 erfÿ1 r
2

� �h i
: �12�

The probability-based knockdown factor (PKF) is de®ned then as

PKF � ar

Pcl

; �13�

where Pcl is the classical buckling load.
In order to illustrate the stochastic imperfection sensitivity concept, let us consider a simple structure,

namely, a column on a non-linear elastic foundation

EI
d4w
dx4
� P

d2w
dx2
� k1wÿ k3w3 � ÿP

d2w
dx2

; �14�

where w�x� is the initial imperfection, w�x�, the additional de¯ection, P, the axial load, k1 and k3, the non-
linear spring coe�cients of the foundation. Buckling of the perfect column on a linear foundation is a
textbook problem (e.g. Timoshenko and Gere, 1961). An imperfect column on a non-linear softening elastic
foundation exhibits imperfection sensitivity in that the limit load, the structure is able to support, may turn
out to be far less than the buckling load of its perfect, linear counterpart. Application of the Galerkin
method for a column simply supported at its ends yields the following equation, derived by Frazer (1965) in
his Ph.D. dissertation, as a single-term approximation:

�1ÿ k�3 � 81

32
sn2

mk2; �15�

where nm is the initial imperfection amplitude associated with m half sine waves in the axial direction, k is
the non-dimensional limit load, and s is a value depending on the physical parameters of the system.

This type of analysis can also be demonstrated on the imperfection sensitivity of a shell with a non-
axisymmetric periodic imperfection, studied by Koiter (1963a,b):

w0�x� � gh cos
icpx

L

�
� 4cos

icpx
2L

cos
icpy
2L

�
; �16�

where x is the axial coordinate, y, the circumferential coordinate, g, the non-dimensional initial imper-
fection amplitude, ic, the number of half waves at which the associated perfect shell buckles, L, the shell
length, and h, the shell thickness. Koiter arrived at the following equation relating the buckling load with
the initial imperfection amplitude:

�1ÿ k�2 � 6cgk � 0; �17�
where k � P lim =Pc, with P lim being the limit load, Pc, the classical buckling load of the perfect shell,
c � �������������������

3�1ÿ m2�p
.
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The analysis based on a single-term approximation is quite similar in its general form, but not in its
particulars, to the asymptotic method developed by Koiter (1945, 1963, 1967, 1970) and by Budiansky and
Hutchinson (1964). The asymptotic expressions or the equations based on a single-term Bubnov±Galerkin
approximation can be utilized for understanding the disastrous in¯uence of initial imperfections on the
load-carrying capacity of the structure.

As far as the probabilistic considerations are concerned, we are looking for a highly reliable perfor-
mance, associated with the probability of failure, say 10ÿ4 or even less. Realizing this, one immediately
should cast a doubt on the possibility that the highly simpli®ed expressions (which, however, are of extreme
importance in capturing the physical phenomenon itself) would accurately predict the required high reli-
ability. In other words, simpli®ed expressions may be unusable in calculating extremely small probabilities
of failure. But this is exactly what the society demands ± namely small, if not negligible, unreliability. This
was also an essence of Koiter's (1980) Communication.

It was perfectly valid to utilize a single-term Bubnov±Galerkin approximation in the early work of
Bolotin (1962). Analogously, application of KoiterÕs asymptotic expressions by Thompson (1967), Roorda
(1972), and Hansen and Roorda (1973) served the purpose of illustrating the reliability approach in im-
perfection sensitive structures (see also Augusti, 1974). Yet, it appears that an industrial design ®rm, for
example, cannot use such expressions in order to justify the reliability calculations with the required ex-
tremely small probabilities of failure; inclusion of additional terms in the Bubnov±Galerkin or asymptotic
expansions may signi®cantly alter the resulting probabilities of failure, and invalidate the designs proposed
on the basis of single-term or asymptotic approximations. Yet, some very recent works still utilize the
deterministic asymptotic expansions for reliability calculations.

We must assume that these ®ne points were perfectly understood by some investigators quite early, as
they did not follow the deterministic single-term or asymptotic methodologies, in conjunction with treating
the imperfection amplitude as a random variable.

2. Studies based on ergodicity assumption

In his review paper, Amazigo (1976) stresses with regard to Eq. (1):

``It is however a non-trivial problem to obtain Eq. (1) and perform the analysis for N> 2, say. It is this
di�culty that limits the e�ectiveness of this method.''

Instead of utilizing the concept of random variable, as in the works by Bolotin (1962) and Thompson
(1967), the scholars of the Harvard group correctly decided to adopt the theory of random functions,
identifying the initial imperfections as random ®elds with speci®ed probabilistic characteristics, namely, the
mean initial imperfection function and the autocorrelation function. Apparently, such studies dealing with
imperfection sensitive structures were ®rst undertaken by Frazer (1965) and Frazer and Budiansky (1969).
They studied the imperfect column on a non-linear elastic foundation. The length of the column was taken
to be in®nity. The following assumptions were made about the initial imperfection ®eld: (a) they were
considered to form a weakly homogeneous random ®eld, (b) the assumption of ergodicity of this ®eld was
also introduced.

Weak homogeneity implies that the mean initial imperfection function is a constant, whereas the
autocorrelation function depends only on the di�erence, x2 ÿ x1, where x1 and x2 are the spatial coordinates.
Hence, the mean square value of a homogeneous random function is a constant too. Weak homogeneity, or
insensitivity to a shift of the initial cross-section of reference, is possible for in®nite domains. Therefore,
possibly, the in®nite length assumption was adopted. For solving the problem, Frazer and Budiansky
(1969) resorted to the classical method of stochastic linearization and to the additional assumption, that the
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output random ®eld, namely the additional de¯ection of the column, was ergodic too. The main conclusion
derived in this article is that each in®nite column in the ensemble has the same, deterministic buckling load,
which depends on the autocorrelation function of the initial imperfection alone and not on a particular
realization of any of them.

It appears to us that the source of the above paradoxical result stems from the fact that the authors
assumed ergodicity not only of the input ®eld, but also of the output ®eld. This assumption allowed us to
facilitate the analytical solutions that were derived. In order to check the validity of such an assumption,
Scheurkogel et al. (1981) undertook an investigation of a model system, which allowed us to obtain a closed
form solution. Then the same problem was solved by invoking the ergodicity assumption. A control pa-
rameter k was introduced so that one could study the changing behavior of the system as the control
parameter was varied. It turned out that, in general, the output of the system was inergodic. At some value
of the parameter, namely k� 2, the ergodicity assumption yielded a result coinciding exactly with the re-
sponse obtained. This implies that sometimes the error may not a�ect the estimate of the systemÕs response
(the ergodicity assumption constituted a bene®cial, ``good'' error!). In two distinctive ranges of variation of
the parameter k, the behavior turned out to be of di�erent nature. For 0 6 k < 2, the ergodicity assumption
introduced a small error of the order of one per cent. Yet, for 2 < k 6 4, the ergodicity assumption led to
large errors. In particular, when k tends to 4, the ergodicity-based solution is ®nite, whereas the exact
solution is unbounded. As is seen, extreme caution must be exercised when invoking the ergodicity as-
sumption: the di�erential equation itself, rather than an analyst, should be given freedom to decide if the
output is ergodic or not.

3. Monte Carlo simulation is not a method of last resort

In 1969, Frazer and Budiansky authored a thought provoking article about the buckling of a column
with stochastic imperfections; they concluded that the realizations of the columns were di�erent, yet they all
shared the same deterministic buckling load. This load depended on the probabilistic characteristic of the
imperfection, yet it was shared by all other columns with a probability of unity. Interestingly, this load
depended on a single value of the spectral density of the initial imperfections, and was independent, oth-
erwise, of the spectral content of the ®eld.

To illustrate this point, let us reproduce the formulas for deterministic buckling loads derived for shells.
Amazigo (1969) obtained the following expression for the static buckling load of a circular cylindrical shell:

�1ÿ ks�7=2 � 9pc2

2
���
2
p S�1�; �18�

where S(1) is the power spectral density of the imperfection spectrum S(x) evaluated at the frequency
corresponding to the classical asymmetric buckling mode, x � 1. Later, Amazigo and Budiansky (1972)
presented a modi®ed formula

1� ÿ ks�7=2 � 9pc2

2
���
2
p S�1�k2

s : �19�

According to the authors, this formula should provide a more accurate estimate for ks, the buckling load
of the imperfect shell. Tennyson et al. (1971) proposed to evaluate S(1) by utilizing the power spectral
density corresponding to an exponential cosine autocorrelation function

S�x� � D2f�x2 � f2 � c2�
p�x4 � 2�f2 ÿ c2�x2 � �f2 � c2�2� ; �20�

where D2 is the mean square value of the imperfection. By setting x � 1, f � 0:2 and c � 1, they obtained
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S�1� � 2:52D2=p �21�
with Eq. (19) taking the form

�1ÿ ks�7=2 � 9c2

2
���
2
p �2:52D2�k2

s : �22�

Amazigo and Budiansky (1969) cautioned that use of Eq. (19) will lead to incorrect results if the actual
power spectral density does not peak near x � 1.

However, it appeared to the present writer that the very constancy of the buckling load should have been
questioned. It was decided that instead of pursuing some new, purely analytic approach, in addition to what
was already undertaken in several studies at Harvard University, it would be nice to perform an experi-
ment. Yet, how would one obtain numerous realizations of real columns on non-linear elastic foundations?
If not in a real laboratory, then may be in a virtual one, on the computer? Thus, the idea occurred to study
the Frazer±Budiansky problem by the Monte Carlo simulation.

The idea did not seem to be fanciful or even new. Indeed, Frazer (1965) himself had already performed
the Monte Carlo analysis of a column on a non-linear foundation. Yet, most unfortunately, he limited
himself to a single-term approximation. Such an analysis leads, once this assumption is made, to a closed-
form solution, given in Eq. (11), for the reliability. Naturally, one does not need the Monte Carlo solution if
the exact solution is at hand, unless one wants to illustrate the validity of the Monte Carlo solution in the
particular case capable of exact solution. Once con®dence has been gained through such a comparison, if it
is favorable, one resorts to the multi-mode Monte Carlo solution, where the exact solution is unavailable.
The Monte Carlo method had to be combined with multi-mode approximation rather than with the single-
term approximation, performed by Frazer (1965).

Multi-term Monte Carlo simulation was suggested by Hansen (1977) in his probabilistic analysis of
randomly imperfect shells. However, the analysis performed could be characterized as unbalanced: detailed
analytical treatment combined with simpli®ed probabilistic analysis, the assumption being that all Fourier
coe�cients used in the series expansion are identically distributed (speci®cally, each Fourier coe�cient was
taken as a normally distributed variable with the same variance). This assumption corresponds in essence to
the ``white-noise'' autocorrelation function of the initial imperfections. Thus, the analysis did not allow
information on general autocovariance function. Indeed, there exists no compelling reason for initial im-
perfections to be a spatial ``white noise.'' Some other investigators, albeit in a dynamic context, also es-
sentially followed this analysis. They neglected the correlations between the various Fourier coe�cients, but
adopted non-constant variances (with a new term coined for such imperfections: ``grey noise'') (Lindberg,
1988).

It was realized by this writer that the multi-dimensional probability densities should serve as a point of
departure for the simulation analysis; the correlation analysis start from the mean function and the
autocorrelation function, and end with the variance±covariance matrix of the Fourier coe�cients of the
initial imperfections or of any other random variables, stemming from a suitable discretization. This ma-
trix, in the general case, must be a fully populated one, and not a diagonal one with identical (Hansen,
1977) or di�erent (Lindberg, 1992) elements. In order to study the Frazer±Budiansky model structure, the
present writer developed a general simulation procedure for solving the stochastic boundary value problems
(Elishako�, 1979).

This simulation procedure was applied to several probabilistic problems: impact buckling of a column
(Elishako�, 1978), Ho�Õs problem of buckling of a column in a testing machine (Elishako�, 1980) and the
Frazer±Budiansky problem Elishako�, 1979). In the latter article, a column of ®nite length was studied for
several reasons: (1) an assumption of in®nite length may simplify the analytical analysis but complicate the
numerical one, (2) the structures utilized and analyzed by engineers (fortunately) do not possess in®nite
length, (3) the non-linear column on a non-linear elastic foundation in the previous studies was not ana-
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lyzed in terms of the edge-e�ect method to justify looking for interior solutions (as those associated with the
in®nite structure), and for corrective edge-e�ect solutions. Moreover, why should one assume in®nite length
when the Monte Carlo solution for realistic ®nite-length shells is easier? In the study of Elishako� (1979),
for each realization, the buckling load was determined numerically by transforming the non-linear algebraic
equations into numerically solved ordinary di�erential equations.
1. The Monte Carlo solution yields results that are practically coincident with the exact solution, when the

latter is obtainable for the single-term approximate problem. This demonstrates that the Monte Carlo
solution may exhibit a better performance than what the various statistical tests may predict.

2. A single-term Bubnov±Galerkin approximation is not su�cient for accurate prediction of the structural
reliability; depending on the systemÕs parameters, various degrees of approximation, higher than one,
must be achieved for the reliability estimates to be accurate.

3. The design buckling load associated with high reliability may signi®cantly deviate from the average
buckling load.

4. As the length of the column increases, the variance of the buckling load decreases.
The last conclusion may represent a link with the result of Frazer and Budiansky (1969) who concluded that
for an in®nite column, the buckling load was a deterministic quantity. However, for the realistic ®nite
column, the buckling load depends on the particular realization of the initial imperfection function, which
in turn depends on the probabilistic measures (mean and autocorrelation function) of the initial imper-
fections.

In a latter analysis, Day (1980) showed that in some simple cases, the ergodicity assumption may be
dispensed with for evaluation of the mean buckling load. Yet, the analyses yielding the mean buckling load
alone could hardly be considered practical. Each of us may remember various, sometimes entertaining,
objections to the average quantities, and they will not be recapitulated here. Anyway, knowledge of the
average buckling load is insu�cient for probabilistic design of structures subject to buckling.

The development of a general simulation procedure for initial imperfections with given mean and
autocorrelation functions ascertained the way of introducing the initial imperfection sensitivity into design.
It involves three main items:

(a) development of accurate deterministic (analytical or numerical) tools for buckling load prediction;
(b) compilation of extensive experimental information on imperfections, boundary conditions, elastic
properties, load scatter etc., with a view to deriving the mean functions and autocorrelation functions
of random ®elds, and assessing their distributions; and
(c) utilization of the Monte Carlo analysis through simulation of brothers and sisters (not perfect clones!)
of the experimentally measured structures.

Clearly, the future of shell buckling analysis is identi®ed by Arbocz in his recent articles with the notion of
stochasticity (see e.g. Arbocz, 1997).

In accordance with the recommendation of Professor Koiter (1982), the early study (Elishako�, 1979)
was generalized to include both the quadratic and cubic non-linearities of the elastic foundation (Elishako�,
1985).

4. Reliability of shells, or how beautiful theories have to accomodate ugly facts

Before proceeding further, it is advisable to review some other deterministic developments. Fortunately,
some investigators of thin shells were interested in experimental analyses.

Arbocz (1968) devoted his Ph.D. dissertation to careful experimental measurements of initial imper-
fections of shells, designed and manufactured in the laboratory of the California Institute of Technology.
Arbocz and Babcock (1969) reported their results on the buckling experiments. They measured the initial
imperfections and the prebuckling behavior of the electroplated isotropic shells via automated scanning
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mechanisms. Singer et al. (1971) reported the results of analogous imperfection surveys on integrally
machined ring-sti�ened as well as stringer-sti�ened shells. These studies provided the data for possible
correlation of experimental buckling results with the theoretical or numerical prediction of the buckling
loads. Such a correlation study would establish feasibility of direct incorporation of the initial imperfection
measurements into the (deterministic) theoretical procedure or the numerical code, with the attendant
direct comparison between the results. These results were reported by Babcock (1974), Arbocz (1974) and
other authors.

``Better'' results were also reported in literature. Arbocz (1974, p. 236, Table 5) reports the result of
Hofmeister (1972), where both the experimental and theoretical buckling loads of Mylar, normalized to the
classical buckling load, constituted 0.52. Such a perfect coincidence is an exception rather than an already
achieved goal. Usually, when such a coincidence takes place, one wonders if it was by pure chance, and if
either the experiment or the theoretical evaluation were properly conducted. For example, the following
question arises: were these Mylar shells analyzed as isotropic or orthotropic ones? (Singer, 1997).

Experimental veri®cation of KoiterÕs special theory has been given by Tennyson and Muggeridge (1969).
They tested a series of photoelastic plastic circular shells containing an axisymmetric imperfection. The
specimens were manufactured by a special spin-casting technique which yielded near perfect cylinders.
Experimental points were all within about 10% of KoiterÕs special theory; remarkably, in some cases the
error was of the order of 2%. For the stringer-sti�ened shell AS-2, Arbocz (1981) reported a value (pro-
duced by computer code STAGS via 30 node model) of 243.8 N/cm, whereas the experimental value 226.3
N/cm was about 7% o�. For shell A8, Arbocz reported a non-dimensional experimental buckling load 0.66,
whereas the theoretical prediction was 0.69. For the shell designated as AB-6, the experimental non-
dimensional buckling load was 0.75, whereas the theoretical estimate was 0.72 (Singer, 1983, Table 27.5). In
parallel, Makarov (1969) carried out extensive measurements of the initial imperfection pro®les at the
Moscow Power Engineering Institute with a view of studying their statistical characteristics.

Encouraged by the mere possibility of a relatively good correlation between the experimental and nu-
merical results (and hopefully even a better one, once the boundary conditions could be closely identi®ed), it
occurred to the present author that the probabilistic analysis must be linked with the numerical and ex-
perimental developments in a hybrid manner. The experimental developments at Caltech, the Technion, the
University of Toronto, and the Moscow Power Engineering Institute led this writer to the idea of trying, in
parallel, to investigate the e�ects of the ergodicity assumption suggested at Harvard.

The ®rst step was to probabilistically evaluate the initial data banks just compiled (Arbocz and
Abramovich, 1979; Arbocz, 1982). Two group of shells, designated as A-shells and B-shells respectively
were statistically analyzed (Elishako� and Arbocz, 1982a,b) from the compiled data bank. Estimated
variances of the measured initial imperfections were plotted as functions of the axial coordinate for the A
group (Fig. 7 in Elishako� and Arbocz, 1982a,b) and B group (ibid, Fig. 10). These variances were not
constant, implying that the experimental initial imperfections cannot be treated as a weakly homogeneous
random ®eld, let alone as an ergodic one. This demonstrated that the works based on the ergodicity hy-
pothesis could not be characterized as practical. The fact that in another collection of shells, measured at
the Moscow Power Engineering Institute, the experimental data did not contradict the assumption of weak
homogeneity of the initial imperfections of circular cylindrical shells in the circumferential direction
(Makarov, 1969, 1970) appears to be surprising, as the latter shells had a seam.

Neither did the experimental results support the assumption made by Hansen (1977), namely, that the
Fourier coe�cients of the initial imperfections were statistically independent and identically distributed,
nor did the imperfections constitute a ``grey'' noise as suggested by Lindberg (1988). Thus, the statistical
analysis of real shells vividly illustrated that none of the specialized assumptions made in literature about
the probabilistic pattern of the initial imperfections were justi®ed. It should be immediately noted, out of
fairness to the authors of the above studies, that these assumptions were not made arbitrarily: they either
permitted theoretical treatments of various kinds (the work performed at Harvard university), or reduced
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the computational e�ort (the work performed at Moscow Power Engineering Institute or the University of
Toronto).

Thus, the assumption of homogeneity in the axial direction, adopted in the West, as well as its cir-
cumferential counterpart adopted in the East, did not prove to be viable hypotheses. In addition, dealing
with in®nitely long shells in conjunction with the hypothesis of ergodicity diverted the attention of the
investigators from the main aspect of reliability of the structure, which can be utilized for design purposes.
On the contrary, single-term Bubnov±Galerkin approximations, while concentrating on the reliability,
could not re¯ect the reality properly, as too much was neglected.

Indeed, recourse to the ®nite structure combined with the ability to determine both the mean values and
variances of the buckling loads in the multi-modal setting was a major step, but the article by Miller and
Hedgepeth (1979) did not address the main issue of reliability determination; reliability, rather than the ®rst
and second moments, can be utilized in design. One may argue that the Gaussian assumption for the
buckling loads would yield the reliability once the ®rst and second moments were calculated. Such an
assumption would be incorrect, for the probability density is highly skewed (see e.g. Elishako�, 1983, Figs.
5.27 and 11.9) as both the single- or multi-mode analyses would clearly demonstrate.

A special simulation procedure (Elishako�, 1978) was applied to shells with axisymmetric imperfections
(Elishako� and Arbocz, 1982a,b) as well as to shells with general non-axisymmetric imperfections. The
assumption of uncorrelatedness of some of the Fourier coe�cients, adopted in the latter article, was
subsequently dispensed with (Elishako�, 1988).

The next step in the analysis, following the Monte Carlo simulation of the ``brothers'' and ``sisters'' of
experimentally measured shells, is the performance of the buckling calculations of each simulated shell by
the special procedures. These procedures include a special theory by Koiter (1963a, b) for asymmetric
shells, the multi-mode analysis of Arbocz and Babcock (1976), the ®nite element method (Ernst, 1979) for
the general non-axisymmetric shells, as well as other analytical studies or numerical codes, like STAGS, etc.

Once a large amount of realization was available, the reliability of the shells could be computed as the
fraction of shells that did not fail prior to a predetermined load level. This ``assume as little as possible''
approach in dealing with the problem, directly combined three major ingredients, hitherto unconnected: the
theoretical, numerical and experimental aspects of the buckling research.

5. How to corroborate the Monte Carlo analysis?

The Monte Carlo method is usually resorted to when an exact solution is not available. However, some
other approximate method may be available to tackle the stochastic boundary value problems in question
and once such an approximate solution has been obtained, the investigators almost invariably check it
against the Monte Carlo simulation. Both methods are approximate in their nature; which is preferable
in these circumstances? Many investigators think that the non-Monte Carlo method is preferable as a
``cheaper'' technique, but this premise is due for reexamination.

Two considerations are of importance in this respect. The Monte Carlo simulation technique is a uni-
versal tool, applicable for example, for small or large deviations of the random variables or functions
involved. The other approximate techniques invariably have limited areas of application. They may be
e�ective, for example, where the coe�cients of variations are small. When we perform both the Monte
Carlo analysis and the other approximate evaluation, which method checks the other then?

Usually, researchers ``promote'' their own approximate technique; then, as they maintain, they compare
it with the Monte Carlo method, as the exact solution is unavailable. Thus, they check a method with
limited range of application with the one with a wider validity. Still, these authors could claim that they are
comparing a numerically cheap technique with a numerically expensive method, and if the comparison
turns out to be good, they advocate for use of the non-Monte-Carlo method. Then it appears reasonable to
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claim that in the general case of the complex structure, or when stochastic variations are not small, the
Monte Carlo method should be used as a universal technique. Yet, as it is, in essence, a computerized
experimental method, the other, approximate analytical techniques should be used to check it. Such a
conclusion may appear paradoxic at ®rst sight, but whereas for a speci®c set of parameters, one approx-
imate method may be valid and the other may prove to be applicable for other sets. Both should be in the
vicinity of the results furnished by the Monte Carlo method, albeit in di�erent ranges. It becomes obvious
that the general Monte Carlo method is being checked by methods of limited applicability. An analogous
view is shared by Shinozuka (1996).

It appears imperative to evaluate the results obtained by the Monte Carlo method by di�erent analyt-
ical±numerical techniques which may be e�ective in speci®c ranges of variation of the parameters. One such
technique is the second-order second-moment method. For its detailed exposition, the reader may consult
the article by Hasofer and Lind (1974), and numerous later texts. This method has been extended by
Elishako� et al. (1987) to cover the non-linear buckling of shells with initial imperfections treated as
random functions.

The cornerstone of the method is the availability of a deterministic state equation

Z � Z�X1;X2; . . . ;XN �; �23�
where Z�. . .� is a performance function. Its nature depends on the type of the structure and the limit state
considered. According to the de®nition, the equation

Z � 0 �24�
determines the failure boundary. The inequality

Z < 0 �25�
implies failure, whereas its opposite

Z > 0 �26�
indicates a successful performance. The zero-order second-moment method calls for linearization of the
function Z at the mean points E(Xi) and knowledge of the distribution function of the random vector X.
Calculations are relatively straightforward if X is normally distributed, if not, an appropriate transfor-
mation is in order.

In the case under investigation, we are interested in knowing the reliability of the structure at any given
load k, i.e.

R�k� � Prob�K P k�; �27�
where K is the random buckling load. A function Z can then be de®ned as follows:

Z�k� � Kÿ k � u�X1;X2; . . . ;XN � ÿ k �28�
where k is the applied deterministic load, u�X1;X2; . . . ;XN � is the relation postulated by Bolotin (1962) as
per Eq. (1). However, when such a relationship is not available analytically, we can visualize that avail-
ability of a numerical code is equivalent to the knowledge of this function. To combine the numerical codes
developed, for example, by Arbocz and Babcock (1980) with the zero-order or ®rst-order second-moment
method, we need to know the lower order probabilistic characteristics of Z. In the ®rst approximation, for
small variances and covariances of Xj, we have

E�Z� � E�K� ÿ k � E�u�X1;X2; . . . ;XN �� ÿ k

' u�E�X1�;E�X2�; . . . ;E�XN �� ÿ k: �29�
The variance of Z is given as
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var�Z� � var�K� '
XN

j�1

XN

k�1

ou
oXj

� �
0

ou
@Xk

� �
0

cov�Xj;Xk�; �30�

where cov�Xj;Xk� is the covariance of components Xj and Xk of the initial imperfections, determined by
experimental measurements. Calculation of the derivatives �ou=oXj� at mean values of the arguments
Xj0 � E�Xj� is carried out numerically. Having estimated E(Z) and var(Z), one obtains the estimate for the
probability of failure at the load level k:

Pf�k� � Prob�Z < 0� � U�ÿb�; U�x� � 1
2
� erf�x�; �31�

where

b � E�Z�=rZ : �32�
rZ being the mean square deviation of Z and

rZ �
��������������
var�Z�

p
: �33�

Numerical analysis for unsti�ened circular cylindrical shells were reported by Elishako� et al. (1987),
and showed good correlation with the Monte Carlo method. A more accurate method is the ®rst-order
second-moment method or (as it is universally referred to) the Level 2 method. In the buckling context, it is
implemented as follows (Elishako�, 1984): for simplicity, we consider a problem involving two initial
imperfection parameters Xj and Xk, forming a random vector X. Through the initial imperfection data
banks one obtains the mean values E�Xj�;E�Xk� and the variance±covariance matrix

�C� � var�Xj� cov�Xj;Xk�
cov�Xj;Xk� var�Xk�
� �

: �34�

We denote the vector of basic variables as Y, they have zero means and unity variances. Then

X � C1=2Y � E�X�; �35�
where

Y � �C1=2�ÿ1�X ÿ E�X��; �36�
and C1=2 is the square root of a positive-de®nite matrix C. For every realization of Y, we ®nd the realization
of X immediately, and using the computer programs developed by Arbocz and Babcock (1980), we de-
termine the buckling load. This enables us to determine the failure boundary for ®xed values of a

Z � aÿ k � 0 �37�
as follows: one speci®es the direction

l � �i cosc� j sinc�l: �38�
At the top of the vector, we check if the boundary load exceeds a. If it does not, we lengthen the vector

and repeat the procedure, and if the buckling load still does not exceed a, we continue the process. If the
buckling load is in excess of a, we multiply the length of the vector by a number less than unity and repeat
the process till we reach the point at which the buckling load is nearly a, within the demanded accuracy.
Then we rotate the vector l by changing the angle c, and repeat the process. This yields the failure
boundary, and the smallest distance to it (provided there are no multiple points with the same minimum
distance) is determined from the origin of coordinates. This distance is denoted by bHL, as a Hasofer-Lind
index. The probability of failure is given by Eq. (30), where b is replaced by bHL. This procedure (Elishako�,
1984) awaits its numerical implementation for buckling of structures.
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The zero-order second-moment method has been applied by Arbocz and Hol (1991) and Arbocz (1997)
for integrally stringer-sti�ened shells (see Stam, 1996). Computationally, it is much less expensive than the
direct Monte Carlo method, but the latter is applicable for arbitrary coe�cients of variations, whereas the
former is valid only for small variations of the initial imperfection amplitudes. This basic premise may not
hold true for many cases reported in the initial imperfection data banks. In addition, the reliability esti-
mates furnished by the zero-order and ®rst-order second-moment reliability estimates may be quite sub-
stantial.

It appears that the methods developed in the past two decades in collaboration with Professor Arbocz
illustrate that the imperfection sensitivity concept can be introduced into practice. This will enable the
theoretical ®ndings to be directly embodied in codes, instead of well known ``knockdown factors.''

It should be stressed that we are not trying to ``match'' the existing knockdown factors; if this were the
case, the probabilistic methods would not have a predictive power and only constitute ``forecasting the
past.'' Probabilistic methods produce not arbitrary knockdown factors, but the ones that are directly de-
rivable from the required reliability levels. This may eliminate both underdesign and overdesign of struc-
tures, prone to buckling. However, we must emphasize that extremely intelligent e�orts are needed for
probabilistic methods to be implemented in practice. Sophisticated devices are needed to measure initial
imperfection pro®les. Fortunately, this is possible, as was demonstrated at various laboratories in di�erent
parts of the world and especially by Professor Arbocz at the Delft University of Technology. The results of
these measurements have to be statistically interpreted, with a view to checking hypotheses on their dis-
tribution. If Fourier coe�cients are involved, joint probability distributions are needed rather than marginal
ones. The probabilistic analysis must be coupled with accurate deterministic analysis, based on either FEM
or multi-mode Galerkin approximations. If the mean square deviations of the initial imperfections are small
compared with their mean values, one can use the zero-order or the ®rst-order second-moment method; if
the coe�cient of variation is moderate or large, it appears that one should use the Monte Carlo method. In
direct realization of this technique without variance reduction techniques, one may need a supercomputer
environment or a massively parallel computing facility for a su�cient amount of Monte Carlo simulations
so as to determine su�ciently small probabilities of failure with acceptable accuracy.

Here let us backtrack for a moment: have we not neglected some important facet of the problem? For
example, what about the boundary conditions? This problem is discussed in Section 6.

6. Correct modeling of boundary conditions is an extremely non-trivial task

To be able to determine small probabilities of failure, one needs extremely accurate deterministic the-
ories. Buckling load calculations naturally involve compliance with the boundary conditions. How can they
be modeled with su�cient accuracy? For beams, determination of the boundary conditions appears to be a
treatable task. Studies by Horton et al. (1969) and Sweet et al. (1976, 1977) may support such a conclusion.
For shells, however, their determination appears to be an extremely complex task. Existing studies predict
relatively small in¯uence of the boundary conditions for isotropic unsti�ened shells (Almroth, 1966), if
displacement of the edges in the circumferential direction is restrained. However, their in¯uence is signif-
icant for sti�ened shells, as was demonstrated by Arbocz and Sechler (1976). Buckling loads for the speci®c
integrally sti�ened shell XS-1 with the SS-3 and SS-4 boundary conditions, respectively were 141.6 and
184.5 lb/in. Yet, for the same shell with the C-3 and C-4 boundary conditions, the buckling loads were
respectively 161.6 and 204.0 lb/in. Experimental data on sti�ened shell buckling were reported by Singer
et al. (1971).

Elishako� et al. (1992) used the following boundary conditions:

aNx � bu � v � w � Mx � 0; �39�
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where u and v are the displacements in axial and circumferential directions, respectively, w is the transverse
displacement, Nx is the axial force per unit length, Mx is the bending moment per unit length; a and b are
the coe�cients describing elastic springs at the boundaries.

These generalized boundary conditions are reducible to those given in Eqs. (39) and (40). Speci®cally, for
a� 0 and non-zero b, the boundary condition reduces to SS-4 boundary conditions, whereas for b� 0 and
non-zero a we recover SS-3 conditions. For non-zero a, Eq. (39) is rewritten as

Nx � Kxu � 0; Kx � b=a: �40�
For optimal resemblance to the experimental realization of the boundary conditions, Kx in Eq. (40)

should be treated as a function of the circumferential coordinate h. The following dependence was chosen

Kx�h� � K1; for h2i 6 h 6 h2i�1;
K2; for hwi�1 6 h 6 h2i�2;

�
�41�

where the serial number i varies from zero to eight, h0� 0°, h18� 360°. In addition, K2 � K1. This implies
that the shell is attached to the apparatus with nine relatively strong springs with sti�ness K1 and nine
relatively weak springs with sti�ness K2.

It should be stressed that uniform axial springs have been considered by Singer (1962) in the shell
buckling, in a linear setting. Non-uniform boundary conditions along the circumference, in the context of
boundary imperfections, were ®rst treated by Ho� and Soong (1967) with identical non-uniformity at both
edges of the shell; if this non-uniformity can be characterized as a boundary imperfection, one can say that
they considered ``perfect imperfections.'' This assumption has been abandoned by Stavsky et al. (1988) and
Sabag et al. (1989) who considered the realistic ``imperfect imperfections,'' i.e. non-identical imperfections
at both the edges.

Although the problem of non-uniform support conditions for non-linear, imperfect shells was formu-
lated by Elishako� et al. (1992), numerical results have yet to be reported. This latter article led to better
appreciation of the di�culties in modeling ``true'' boundary conditions. Recently, another close look at the
realization of boundary conditions in experimental setting was undertaken (Arbocz, 1997).

Once this is done, nagging questions (by the pseudo-skeptics in ourselves) will still remain. Here is their
partial list:

(a) Is there a scatter in the values of the axial spring Kx?
(b) If the answer is yes, then how to model Kx as a random variable or as a one-dimensional random
®eld?
(c) If K1 and K2 can be treated as random variables, how to determine experimentally their probabilistic
characteristics, e.g. the mean values E�K1�;E�K2�; the variances var�K1�; var�K2� and even more impor-
tant, the covariance cov�K1;K2�?
(d) Moreover, how to ®nd their joint probability distribution for rigorous probabilistic analysis?
(e) How to predict, on-line, the boundary conditions in the service environment, when connections be-
tween the di�erent parts of the system are possibly changed or damaged?
Probabilistic modeling does not appear to be the most suitable answer to the last question. It was shown

by Elishako� and Fang (1995) (see also Ben-Haim and Natke, 1992; Ben-Haim, 1996) that non-probabi-
listic convex modeling may turn out to be suitable for partial answers on the partial information available.
In particular, one can attempt to determine convex sets to which the spring constants belong, rather than
their exact deterministic values, or their probabilistic characteristics.

A trivial conclusion of this section is that rigorous modeling of boundary conditions is a highly non-
trivial task. A less transparent conclusion is the recognition of the fact that special identi®cation techniques
are needed for direct incorporation of the boundary conditions in the analysis. For example, in the de-
terministic setting, it is important to closely approximate the axial spring coe�cient Kx as a function of the
circumferential coordinate; in the probabilistic setting, one needs to identify the probabilistic characteristics
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of the random ®eld Kx�h�. In convex modeling, one only has to determine the set to which Kx belongs.
E�ective deterministic codes are needed to incorporate the variation of Kx�h� in the numerical analysis. The
problem is not resolved even then: in other shells, with di�erent sets of unknown boundary conditions,
additional spring constants may be needed, to accurately represent realistic boundary conditions, enor-
mously complicating the analysis.

7. Probability is not a magic wand

As we see, in the probabilistic setting, the imperfection sensitivity concept may appear to be nice and
dandy. Yet, do probabilistic methods solve the problem in its entirety? Do probabilistic methods have
disadvantages, or do they constitute a panacea for fully closing the chasm between the theory and practice?

For a partial reply to this question, let us recapitulate that once the probability of failure is determined,
we must design the ensemble of shells. This is done by requiring that the reliability should not be less than
some preselected value r. Some investigators adopt, without providing a justi®cation, a value of allowable
probability of failure Pf ;all � 1ÿ r � 0:02 �r � 0:98�. Yet, it is not easy to convince the top management
that, following the frequency interpretation of probability, nearly two in every 100 realizations of the
structure may fail.

Initial imperfection data banks, even when compiled, may still contain insu�cient information for rig-
orous probabilistic processing of all variables. In such circumstances, researchers ``randomize'' the problem
by assigning the probability distributions. By doing so they try to ``make something out of nothing'' and
create the illusion of availability of information, while in actuality it is lacking. Is such a procedure a
necessary evil, and should one just live with it? At least, many investigations felt uncomfortable with this
situation.

One of the architects of the probabilistic applications to mechanics, Freudenthal (1956) stressed that ``. . .
ignorance of the cause of variation does not make such variation random.'' (for the detailed discussion of
this and other related topics see Elishako�, 1999a)

Although Freudenthal recognized, as this quotation may demonstrate, that probability must not be the
only game in town, he did not provide any alternative to it. Yet, this noble self-criticism of his ``own''
methods, appears worthy of following.

This and numerous other considerations led Ben-Haim (1985, 1996), Ben-Haim and Elishako� (1989,
1990), Elishako� et al. (1994) to develop the method of convex modeling for applied mechanics applications.
The name stems from realization of the fact that most inequalities describing the range of variations of
uncertain variable constitute convex sets. As the variables are de®ned by their ranges of variation only
rather than by the probability densities, the following questions can be posed:

(a) What is the maximum buckling load the structure may experience when the initial imperfections vary
in a convex set?
(b) What is the minimum buckling load the structure may attain in these circumstances?
Once these questions are answered, it is prudent to use the minimum buckling load as design load.
Such analyses were performed by Ben-Haim and Elishako� (1990), Ben-Haim (1993a,b, 1994), Lindberg

(1992), Pantelides (1996a,b), Elishako� et al. (1994), and Elsei® et al. (1999). The initial imperfection vector
X was represented as the sum of a nominal vector X0 and the deviation vector f. The deviation was pos-
tulated to fall within the following ellipsoidal set:

Z�v;x� � f :
XN

i�1

fi

x2
i

(
6 v2

)
; �42�

where the size parameter v and the semi-axes x1;x2; . . . ;xN are based on experimental data, obtainable
from the initial imperfection data banks. The lowest buckling load which can be obtained for any of the
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shells in the ensemble described by Eq. (42) is expressed formally as the minimum of expression (1) on the
set Z:

l�v;x� � min
f2Z�v;x�

u�X0 � f�: �43�

Hence l�v;x� is the buckling load of the ``weakest'' shell in the ensemble Z, constructed to represent a
realistic range of shells. The limit load for an imperfection vector X0 � f, to the ®rst order of f, is

u�X0 � f� � u�X0� �
XN

i�1

ou�X0�
oXi

fi: �44�

Thus the problem (43) is replaced by the following

l�v;x� � min
f2Z�v;x�

u�X0�
� � /Tf

�
; �45�

where

/T � ou�X0�
oX1

;
ou�X0�

oX2

; . . . ;
ou�X0�
oXN

� �
; �46�

where the superscript T stands for matrix transposition. The minimum buckling load is given by the for-
mula (Ben-Haim and Elishako�, 1989):

l�v;x� � u�X0� ÿ v
XN

i�1

xi
ou�X0�

oXi

� �2
" #1=2

: �47�

From this relation, one recognizes that signi®cant reduction of the buckling load results from high
sensitivity of the nominal buckling load to Fourier coe�cients, whose semi-axes in the imperfection el-
lipsoid are large. We also recognize that the minimum buckling load depends linearly on the overall size v
of the imperfection ellipsoid, and non-linearly on its shape parameters x1;x2; . . . ;xN and on the partial
derivatives ou�X0�=oXi. The values of the partial derivatives have been borrowed from a previous proba-
bilistic study by Elishako� et al. (1987).

Whereas the formula (49) is a ®rst-order approximation, a second-order approximation has also been
written explicitly in terms of the Hessian matrix with elements o2u�x0�=ofiofj. The result is not recapitulated
here.

It is also of interest to de®ne the variations of the imperfections in terms of a radial tolerance on the
shape of the shell. Manipulations which are not reproduced here lead to the following expression of the
buckling load in terms of the imperfection deviation

u X0� � f�n; h�� � u�X0� �
Z 2p

0

Z p

0

f�n; h�S�n; h�dndh; �48�

where S�n; h� is a combination of trigonometric functions with coe�cients that depend on the elements of
the vector ow�X0�=ofi; for details one may consult Ben-Haim and Elishako� (1989, 1990). A close exam-
ination of Eq. (48) reveals that the largest reduction in the buckling load is obtained from the imperfection
pro®le which switches between its extreme values f̂ and ÿf̂, where f̂ is the radial tolerance. The minimum
buckling load for the ensemble of shells with radial tolerance f̂ reads:

l�f̂� � min
jfj<f̂

u�X0� � f�n; h���

� u�X0� ÿ f̂
Z 2p

0

Z p

0

jS�n; h�jdndh: �49�
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Suppose now that one wishes to construct a radial tolerance for which the minimum buckling load takes
on the value k0. Then one chooses f̂ as follows

f̂ � �l�f̂� ÿ u�X0��
Z 2p

0

Z p

0

jS�n; h�jdndh

,
: �50�

This approach permits theoretical determination of the knockdown factor within the convex modeling
(CKF). It is de®ned as the ratio of the minimum buckling load to the classical buckling load:

CKF � 1

Pcl

u�X0�
8<: ÿ v

XN

i�1

xi
ou�X0�

oXi

 !2
24 351=29=; �51�

for ellipsoidally by modeled initial imperfections, and

CKF � 1

Pcl

u�X0�
8<: ÿ f̂

Z 2p

0

Z p

0

jS�n; h�jdndh

9=; �52�

for shells with radial tolerance (compare Eq. (13), de®ning the KF within the probabilistic modeling). This
knockdown factor is anticipated to lie above those provided by the NASA monographs (1969), which
would imply that the existing monographs specify too conservative estimates and thus penalize carefully
designed shells. As we see, convex non-probabilistic modeling of uncertainty, provides theoretical means
for determining the KF.

For other applications of this method the reader may consult the articles by Elishako� and Ben-Haim
(1990), Lindberg (1992), Ben-Haim (1993a, b), Pantelides (1996a,b), and Elsei® et al. (1999).

The ``competition'' between the probabilistic and convex modeling was discussed by Elishako� et al.
(1994). It was shown that in many realistic circumstances, convex modeling of uncertainty and the prob-
abilistic analysis yield close results. This partially answers the following question: which of them is superior?
Another facet of the problem is the fact that convex modeling is both conceptually simpler and compu-
tationally less expensive than probabilistic analysis. This may suggest, in accordance with the law of par-
simony, or Ockham's razor, that it is often the preferable one (see also Elishako�, 1999b).

8. Optimization and anti-optimization can be combined

Non-probabilistic models of uncertainty, in essence, look for the worst designs under uncertainty con-
straints. One determines the minimum buckling load that the structure may experience when uncertain
parameters (initial imperfections, elastic moduli, or other properties) vary within some sets. The ranges
within which the uncertainties vary are the only quantities that are known; the probability densities may be
unknown due to the lack of su�cient information for an accurate probabilistic model. This situation is
somewhat opposite to what we are looking for in classical optimization of structures, which looks for the
best designs. It appeared natural, therefore, to the present writer to coin the term anti-optimization for such
analysis under uncertainty (Bazant and Gedolin, 1991). It covers, as particular cases, convex modeling
(including interval analysis or ellipsoidal modeling) as well as non-convex, set-theoretical modeling.

Optimization and anti-optimization techniques can be meaningfully combined. Indeed, one is interested
in maximizing the minimum buckling load the structure can carry due to uncertainty in the system. Such
analyses were carried out by Adali et al. (1994, 1997). Zhu et al. (1996) developed a novel technique in-
corporating experimentally available information into an ellipsoid of minimum volume, in an N-dimen-
sional space of initial imperfections.
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9. Conclusion

Along with achievements, we have highlighted some misconceptions, mistakes or misuses of probabilistic
methods in buckling of structures as a learning experience. As a Chinese proverb maintains, ``Through
mistakes we can learn the truth.'' Thus, these mistakes and their critical analysis become a path which
enables us to formulate questions more rigorously, and provide more insightful answers than before (as
G.K. Chesterton maintained, ``It isnÕt that they canÕt see the solution. It is that they canÕt see the problem'').
Obviously, ``they'' must be replaced by a collective ``we''. An additional reason for emphasizing past
mistakes is: (a) to warn against repeating them by not yet experienced researchers or engineers, (b) to allow
researchers to learn from othersÕ mistakes, rather than commit them themselves; (c) to demonstrate that
even in the modern non-judgmental society, some decisions and judgments must be made without getting
lost in the available literature, on the one hand, is being over-attracted by the computerÕs possibilities on the
other. The latter is especially unfortunate, as overzealous researchers often declare all variables (except,
luckily, universal constants) to be random; then, by pushing the computer button one can choose any
marginal distribution desired from the list of available ones; thus, quick estimates of the probabilistic
parameters are furnished. This naive and deceiptful research consumes minds and resources which could be
more usefully utilized. Links with experimental data, hypotheses testing subroutines on joint probability
density are not only absent, but not even dreamt about.

This article clearly shows that closing the chasm between theory and practice is not an impossible task. It
can be dealt with along several alternative avenues. The probabilistic methods do not seem to have a
monopoly on the truth about uncertainty. Conceptually and computationally, simpler approaches are
possible, especially when data is scarce. In some instances, hybrid approaches may be of use.

The problem is not closed. Whereas the knockdown factor disregards available theoretical knowledge,
its advent was an ingenious idea, as it yielded safe designs. Still, it somehow mixes ``apples'' and ``oranges,''
i.e. structures produced by various manufacturing methods with di�erent degrees of workmanship, while
creating universal criteria, irrespective of the speci®c manufacturing process.

It is time now to di�erentiate the knockdown factors for di�erent manufacturing methods, and formulate
new guidelines for NASA and other agencies. It seems to this writer that research should concentrate on
several directions:
1. Accumulation of data for statistical analysis to check the nature of the distribution of random initial im-

perfections, elastic moduli, thickness variations, load variations etc.
2. Development of techniques for identi®cation of boundary conditions, which may turn out to have a non-

uniform nature. When limited data is provided, identi®cation may be replaced by establishment of local
modi®cations of the boundary conditions during the service life of the structure, via convex modeling.

3. Development of ®nite element codes in a stochastic setting, incorporating uncertain imperfections, elastic
moduli, boundary conditions; thickness variation, and loading conditions development of buckling pre-
and post-processors for commercially available codes like NASTRAN, ADINA, ALGOR, DIANA, etc.

4. Interrelation between probabilistic methods and antioptimization in the buckling context (see Elishako�,
1999a,b).
Numerous other topics on uncertain buckling, dealt with either in probabilistic or antioptimization

settings are treated in the forthcoming monograph (Elishako� et al., 2000).
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